Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.849
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149857, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583232

RESUMO

Molecular mobility of intracellular water is a crucial parameter in the study of the mechanism of desiccation tolerance. As one of the parameters that reflecting molecular mobility, the viscosity of intracellular water has been found intimately related with the protection of the phospholipid membrane because it quantifies the diffusion ability of water and mass in the intracellular environment. In this work we measured the intracellular water relaxation time, which can be translated into water viscosity, by using a previously established NIR-dielectric method to monitor the drying process of baker's yeast and Jurkat cells with different desiccation tolerance. We found that intracellular saccharide can significantly decrease the intracellular water viscosity. Also, the intracellular water diffusion coefficient obtained from this method were found in good agreement with other reports.


Assuntos
Fermento Seco , Humanos , Água/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Jurkat , Saccharomyces cerevisiae/química , Dessecação
2.
Int J Biol Macromol ; 265(Pt 2): 130933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508554

RESUMO

Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.


Assuntos
Glucanos , Saccharomyces cerevisiae , Glucanos/química , Saccharomyces cerevisiae/química , Polissacarídeos/química , Água
3.
Food Chem ; 448: 139062, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531297

RESUMO

Avenanthramide-C (AVN-C) is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. Avenanthramide-C is the biomarker for oat with a variety of physiological functions, whereas its application is constrained by low stability and bioavailability. This study evaluated the potential of yeast cell (YC) and yeast cell wall (YCW) capsules as delivery systems for stabilizing AVN-C. It was observed that these yeast capsules possessed the ellipsoidal morphology and intact structure without visual pores. Additionally, the YCW capsules exhibited higher encapsulation and loading capacity due to the large internal space. The interaction of yeast capsules with AVN-C involved the hydrophobic interactions and hydrogen bonding. Moreover, the loading of AVN-C induced high hydrophobicity inside the yeast capsules, which helped to protect AVN-C against degradation and release AVN-C in a slow and sustained manner in the simulated gastrointestinal tract. The YCW capsules have potential as controlled delivery system for AVN-C, which could be further used as a nutraceutical and added to functional foods.


Assuntos
Avena , Cápsulas , Parede Celular , Saccharomyces cerevisiae , ortoaminobenzoatos , Avena/química , ortoaminobenzoatos/química , Cápsulas/química , Parede Celular/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Biomarcadores , Interações Hidrofóbicas e Hidrofílicas
4.
Appl Spectrosc ; 78(4): 355-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378014

RESUMO

The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, ß-1,3- and ß-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of ß-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 µm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the ß-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.


Assuntos
Proteínas de Saccharomyces cerevisiae , beta-Glucanas , beta-Glucanas/análise , Parede Celular/química , Quitina/análise , Quitina/metabolismo , Glucanos/análise , Glucanos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Proteome Res ; 23(4): 1399-1407, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417052

RESUMO

Mass spectrometry (MS)-based top-down proteomics (TDP) has revolutionized biological research by measuring intact proteoforms in cells, tissues, and biofluids. Capillary zone electrophoresis-tandem MS (CZE-MS/MS) is a valuable technique for TDP, offering a high peak capacity and sensitivity for proteoform separation and detection. However, the long-term reproducibility of CZE-MS/MS in TDP remains unstudied, which is a crucial aspect for large-scale studies. This work investigated the long-term qualitative and quantitative reproducibility of CZE-MS/MS for TDP for the first time, focusing on a yeast cell lysate. Over 1000 proteoforms were identified per run across 62 runs using one linear polyacrylamide (LPA)-coated separation capillary, highlighting the robustness of the CZE-MS/MS technique. However, substantial decreases in proteoform intensity and identification were observed after some initial runs due to proteoform adsorption onto the capillary inner wall. To address this issue, we developed an efficient capillary cleanup procedure using diluted ammonium hydroxide, achieving high qualitative and quantitative reproducibility for the yeast sample across at least 23 runs. The data underscore the capability of CZE-MS/MS for large-scale quantitative TDP of complex samples, signaling its readiness for deployment in broad biological applications. The MS RAW files were deposited in ProteomeXchange Consortium with the data set identifier of PXD046651.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Saccharomyces cerevisiae/química , Proteômica/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Eletroforese Capilar/métodos , Proteínas de Ligação a DNA
6.
J Trace Elem Med Biol ; 83: 127402, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310829

RESUMO

BACKGROUND AND OBJECTIVE: Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS: This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION: The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.


Assuntos
Probióticos , Saccharomyces boulardii , Selênio , Saccharomyces cerevisiae/química , Saccharomyces boulardii/metabolismo , Pichia , Selênio/metabolismo , Probióticos/metabolismo , Digestão
7.
J Biol Chem ; 300(2): 105639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199565

RESUMO

Translation elongation factor 1A (eEF1A) is an essential and highly conserved protein required for protein synthesis in eukaryotes. In both Saccharomyces cerevisiae and human, five different methyltransferases methylate specific residues on eEF1A, making eEF1A the eukaryotic protein targeted by the highest number of dedicated methyltransferases after histone H3. eEF1A methyltransferases are highly selective enzymes, only targeting eEF1A and each targeting just one or two specific residues in eEF1A. However, the mechanism of this selectivity remains poorly understood. To reveal how S. cerevisiae elongation factor methyltransferase 4 (Efm4) specifically methylates eEF1A at K316, we have used AlphaFold-Multimer modeling in combination with crosslinking mass spectrometry (XL-MS) and enzyme mutagenesis. We find that a unique beta-hairpin motif, which extends out from the core methyltransferase fold, is important for the methylation of eEF1A K316 in vitro. An alanine mutation of a single residue on this beta-hairpin, F212, significantly reduces Efm4 activity in vitro and in yeast cells. We show that the equivalent residue in human eEF1A-KMT2 (METTL10), F220, is also important for its activity towards eEF1A in vitro. We further show that the eEF1A guanine nucleotide exchange factor, eEF1Bα, inhibits Efm4 methylation of eEF1A in vitro, likely due to competitive binding. Lastly, we find that phosphorylation of eEF1A at S314 negatively crosstalks with Efm4-mediated methylation of K316. Our findings demonstrate how protein methyltransferases can be highly selective towards a single residue on a single protein in the cell.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Metilação , Metiltransferases/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Fosforilação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína
8.
ACS Biomater Sci Eng ; 10(1): 355-364, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38048070

RESUMO

Currently available methods for cell separation are generally based on fluorescent labeling using either endogenously expressed fluorescent markers or the binding of antibodies or antibody mimetics to surface antigenic epitopes. However, such modification of the target cells represents potential contamination by non-native proteins, which may affect further cell response and be outright undesirable in applications, such as cell expansion for diagnostic or therapeutic applications, including immunotherapy. We present a label- and antibody-free method for separating macrophages from living Drosophila based on their ability to preferentially phagocytose whole yeast glucan particles (GPs). Using a novel deswelling entrapment approach based on spray drying, we have successfully fabricated yeast glucan particles with the previously unachievable content of magnetic iron oxide nanoparticles while retaining their surface features responsible for phagocytosis. We demonstrate that magnetic yeast glucan particles enable macrophage separation at comparable yields to fluorescence-activated cell sorting without compromising their viability or affecting their normal function and gene expression. The use of magnetic yeast glucan particles is broadly applicable to situations where viable macrophages separated from living organisms are subsequently used for analyses, such as gene expression, metabolomics, proteomics, single-cell transcriptomics, or enzymatic activity analysis.


Assuntos
Glucanos , Saccharomyces cerevisiae , Animais , Glucanos/química , Glucanos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Drosophila melanogaster/metabolismo , Macrófagos/metabolismo , Fenômenos Magnéticos
9.
Nature ; 624(7990): 192-200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968396

RESUMO

Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome is far from complete, and assessing the reliability of reported interactions is challenging. Here we develop a sensitive high-throughput method using highly reproducible affinity enrichment coupled to mass spectrometry combined with a quantitative two-dimensional analysis strategy to comprehensively map the interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well format enabled replicate analysis of the endogenous GFP-tagged library covering the entire expressed yeast proteome1. The 4,159 pull-downs generated a highly structured network of 3,927 proteins connected by 31,004 interactions, doubling the number of proteins and tripling the number of reliable interactions compared with existing interactome maps2. This includes very-low-abundance epigenetic complexes, organellar membrane complexes and non-taggable complexes inferred by abundance correlation. This nearly saturated interactome reveals that the vast majority of yeast proteins are highly connected, with an average of 16 interactors. Similar to social networks between humans, the average shortest distance between proteins is 4.2 interactions. AlphaFold-Multimer provided novel insights into the functional roles of previously uncharacterized proteins in complexes. Our web portal ( www.yeast-interactome.org ) enables extensive exploration of the interactome dataset.


Assuntos
Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espectrometria de Massas , Mapeamento de Interação de Proteínas/métodos , Proteoma/química , Proteoma/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Epigênese Genética , Bases de Dados Factuais
10.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834108

RESUMO

In mitochondria, the major subunits of oxidative phosphorylation complexes are translated by the mitochondrial ribosome (mito-ribosome). The correct insertion and assembly of these subunits into the inner mitochondrial membrane (IMM) are facilitated by mitochondrial oxidase assembly protein 1 (Oxa1) during the translation process. This co-translational insertion process involves an association between the mito-ribosome and the C-terminus of Oxa1 (Oxa1-CTD) Nuclear magnetic resonance (NMR) methods were mainly used to investigate the structural characterization of yeast Oxa1-CTD and its mode of interaction with the E. coli 70S ribosome. Oxa1-CTD forms a transient α-helical structure within the residues P342-Q385, which were reported to form an α-helix when combining with the ribosome. Two conserved contact sites that could interact with the ribosome were further identified. The first site was located on the very end of the N-terminus (V321-I327), and the second one encompassed a stretch of amino acid residues I348-Q370. Based on our discoveries and previous reports, a model has been proposed in which Oxa1-CTD interacts with ribosomes, accompanied by transient-to-stable transitions at the second contact site. These observations may enhance our understanding of the potential role of Oxa1-CTD in facilitating the assembly of oxidative phosphorylation complexes and provide insight into the structural characteristics of Oxa1-CTD.


Assuntos
Escherichia coli , Proteínas Mitocondriais , Ribossomos , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
11.
Int J Biol Macromol ; 253(Pt 5): 127131, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776921

RESUMO

As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Saccharomyces cerevisiae/química , Glucanos/química , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Macrófagos , beta-Glucanas/química
12.
Anal Chem ; 95(33): 12209-12215, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552619

RESUMO

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.


Assuntos
Espectrometria de Massas , Complexo de Endopeptidases do Proteassoma/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Modelos Moleculares , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/química
13.
Carbohydr Polym ; 319: 121163, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567689

RESUMO

Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based ß-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based ß-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based ß-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based ß-glucan. Subsequently, we further summarized the current preparation methods of yeast-based ß-glucan carriers and the strategies for preparing yeast-based ß-glucan drug delivery systems. In addition, we focus on discussing the applications of ß-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the ß-glucan drug delivery system are introduced.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Humanos , Saccharomyces cerevisiae/química , beta-Glucanas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Macrófagos , Administração Oral
14.
Anal Bioanal Chem ; 415(21): 5193-5204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458782

RESUMO

The Arxula yeast bisphenol screen (A-YBS) utilizes the bioluminescent Arxula adeninivorans yeast-based reporter cells for tailored analysis of bisphenols, one of the major endocrine-disrupting compound groups. For the first time, this bioreporter has been applied on the high-performance thin-layer chromatography (HPTLC) adsorbent surface to develop a respective planar bioluminescence bioassay (pA-YBS). The goal was to combine the advantages of HPTLC with a more selective bioassay detection for bisphenols. The performance of this pA-YBS bioluminescence bioassay was demonstrated by calculating the half-maximal effective concentration (EC50) of bisphenols compared to references. The EC50 ranged from 267 pg/band for bisphenol Z and 322 pg/band for bisphenol A (BPA) to > 1 ng/band for other bisphenols (BPC, BPE, BPF, and BPS) and references (17ß-estradiol and 17α-ethinylestradiol). The EC50 value of BPA was three times more sensitive in signal detection than that of 17ß-estradiol. The visual or videodensitometric limit of detection of BPA was about 200 pg/zone. The higher signal intensity and sensitivity for BPA confirmed the tailored bioassay selectivity compared to the existing estrogen screen bioassay. It worked on different types of HPTLC silica gel plates. This HPTLC-UV/Vis/FLD-pA-YBS bioluminescence bioassay method was used to analyze complex mixtures such as six tin can migrates, five thermal papers, and eleven botanicals. The detected estrogenic compound zones in the tin can migrates were successfully verified via the duplex planar yeast antagonist estrogen screen (pYAES) bioassay. The two bisphenols A and S were identified in one out of five thermal papers and confirmed with high-resolution mass spectrometry. No bisphenols were detected in the botanicals investigated via the pA-YBS bioluminescence bioassay. However, the botanicals proved to contain phytoestrogens as detected via the pYAES bioassay, which confirmed the tailored bioassay selectivity. This HPTLC-UV/Vis/FLD-pA-YBS bioluminescence bioassay is suited for cost-efficient analysis of BPA in complex samples, with no need for sterile conditions due to the fast workflow.


Assuntos
Saccharomyces cerevisiae , Estanho , Saccharomyces cerevisiae/química , Estrogênios/análise , Estradiol/análise , Compostos Benzidrílicos/análise , Bioensaio
15.
Appl Microbiol Biotechnol ; 107(18): 5715-5726, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37490127

RESUMO

Immobilized yeast cells are used industrially in winemaking processes such as sparkling wine and Sherry wine production. Here, a novel approach has been explored for the infusion and immobilization of yeast cells into filamentous fungal pellets, which serve as a porous natural material. This was accomplished through vacuum application to force the yeast cells towards the core of the fungal pellets followed by culture in YPD medium to promote their growth from the interior. This method represents an improved variation of a previous approach for the assembly of "yeast biocapsules," which entailed the co-culture of both fungal and yeast cells in the same medium. A comparison was made between both techniques in terms of biocapsule productivity, cell retention capacity, and cell biological activity through an alcoholic fermentation of a grape must. The results indicated a substantial increase in biocapsule productivity (37.40-fold), higher cell retention within the biocapsules (threefold), and reduction in cell leakage during fermentation (twofold). Although the majority of the chemical and sensory variables measured in the produced wine did not exhibit notable differences from those produced utilizing suspended yeast cells (conventional method), some differences (such as herbaceous and toasted smells, acidity, bitterness, and persistence) were perceived and wines positively evaluated by the sensory panel. As the immobilized cells remain functional and the encapsulation technique can be expanded to other microorganisms, it creates potential for additional industrial uses like biofuel, health applications, microbe encapsulation and delivery, bioremediation, and pharmacy. KEY POINTS: • New approach improves biocapsule productivity and cell retention. • Immobilized yeast remains functional in fermentation. • Wine made with immobilized yeast had positive sensory differences.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/química , Encapsulamento de Células , Vácuo , Fermentação , Vinho/microbiologia
16.
Science ; 381(6655): 319-324, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37384669

RESUMO

Unlike other chromatin remodelers, INO80 preferentially mobilizes hexasomes, which can form during transcription. Why INO80 prefers hexasomes over nucleosomes remains unclear. Here, we report structures of Saccharomyces cerevisiae INO80 bound to a hexasome or a nucleosome. INO80 binds the two substrates in substantially different orientations. On a hexasome, INO80 places its ATPase subunit, Ino80, at superhelical location -2 (SHL -2), in contrast to SHL -6 and SHL -7, as previously seen on nucleosomes. Our results suggest that INO80 action on hexasomes resembles action by other remodelers on nucleosomes such that Ino80 is maximally active near SHL -2. The SHL -2 position also plays a critical role for nucleosome remodeling by INO80. Overall, the mechanistic adaptations used by INO80 for preferential hexasome sliding imply that subnucleosomal particles play considerable regulatory roles.


Assuntos
Montagem e Desmontagem da Cromatina , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromatina/metabolismo , Histonas/metabolismo , Nucleossomos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
17.
Nature ; 621(7979): 620-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344598

RESUMO

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/ultraestrutura , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
18.
Nature ; 617(7961): 608-615, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165185

RESUMO

Peroxisomes are organelles that carry out ß-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction1. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts2, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes3. Current models postulate a large pore formed by transmembrane proteins4; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS5,6. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels7.


Assuntos
Proteínas de Membrana , Peroxinas , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peroxinas/química , Peroxinas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/química , Peroxissomos/metabolismo , Transição de Fase , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo
19.
Nature ; 618(7963): 188-192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165187

RESUMO

The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Saccharomyces cerevisiae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Lipídeos , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Sinaptotagminas/química , Sinaptotagminas/metabolismo
20.
Nucleic Acids Res ; 51(10): 5162-5176, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070168

RESUMO

RNA-binding proteins (RBPs) form highly diverse and dynamic ribonucleoprotein complexes, whose functions determine the molecular fate of the bound RNA. In the model organism Sacchromyces cerevisiae, the number of proteins identified as RBPs has greatly increased over the last decade. However, the cellular function of most of these novel RBPs remains largely unexplored. We used mass spectrometry-based quantitative proteomics to systematically identify protein-protein interactions (PPIs) and RNA-dependent interactions (RDIs) to create a novel dataset for 40 RBPs that are associated with the mRNA life cycle. Domain, functional and pathway enrichment analyses revealed an over-representation of RNA functionalities among the enriched interactors. Using our extensive PPI and RDI networks, we revealed putative new members of RNA-associated pathways, and highlighted potential new roles for several RBPs. Our RBP interactome resource is available through an online interactive platform as a community tool to guide further in-depth functional studies and RBP network analysis (https://www.butterlab.org/RINE).


Assuntos
Proteínas de Ligação a RNA , RNA , Saccharomyces cerevisiae , Proteômica , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...